\(a^{p + q}\)
|
Belajar mandiri, pintar sendiri! |
©yippiy Corp. |
Rumus Pangkat dan Akar
\(a^p \; a^q = ...\)
\(a^{p + q}\)
\(a^{p - q}\)
\(a^{pq}\)
\(a^p \; b^p\)
\(\frac{a^p}{b^p}\)
1
\(\frac{a^p}{a^q} = ...\)
\(a^{p - q}\)
\(a^{pq}\)
\(a^p \; b^p\)
\(\frac{a^p}{b^p}\)
1
\(\frac{1}{a^p}\)
\((a^p)^q = ...\)
\(a^{pq}\)
\(a^p \; b^p\)
\(\frac{a^p}{b^p}\)
1
\(\frac{1}{a^p}\)
\(\sqrt[q]{a}\)
\((a\,b)^p = ...\)
\(a^{pq}\)
\(a^p \; b^p\)
\(\frac{a^p}{b^p}\)
1
\(\frac{1}{a^p}\)
\(\sqrt[q]{a}\)
\((\frac{a}{b})^p = ...\)
\(a^{p + q}\)
\(a^{p - q}\)
\(a^{pq}\)
\(a^p \; b^p\)
\(\frac{a^p}{b^p}\)
1
\(a^0 = ...\)
\(a^p \; b^p\)
\(\frac{a^p}{b^p}\)
1
\(\frac{1}{a^p}\)
\(\sqrt[q]{a}\)
\(\sqrt[q]{a^p}\)
\(a^{-p} = ...\)
\(a^{p - q}\)
\(a^{pq}\)
\(a^p \; b^p\)
\(\frac{a^p}{b^p}\)
1
\(\frac{1}{a^p}\)
\(a^{\frac{1}{q}} = ...\)
\(a^{pq}\)
\(a^p \; b^p\)
\(\frac{a^p}{b^p}\)
1
\(\frac{1}{a^p}\)
\(\sqrt[q]{a}\)
\(a^{\frac{p}{q}} = ...\)
\(a^p \; b^p\)
\(\frac{a^p}{b^p}\)
1
\(\frac{1}{a^p}\)
\(\sqrt[q]{a}\)
\(\sqrt[q]{a^p}\)
\(\sqrt{a} \; \sqrt{b} = ...\)
\(\sqrt{a\,b}\)
\(\sqrt{\frac{a}{b}}\)
\((a + b)\,\sqrt{c}\)
\((a - b)\,\sqrt{c}\)
\(\sqrt{a + b + 2\,\sqrt{a\,b}}\)
\(\sqrt{a + b - 2\,\sqrt{a\,b}}\)
\(\frac{\sqrt{a}}{\sqrt{b}} = ...\)
\(\sqrt{a\,b}\)
\(\sqrt{\frac{a}{b}}\)
\((a + b)\,\sqrt{c}\)
\((a - b)\,\sqrt{c}\)
\(\sqrt{a + b + 2\,\sqrt{a\,b}}\)
\(\sqrt{a + b - 2\,\sqrt{a\,b}}\)
\(a\,\sqrt{c} + b\,\sqrt{c} = ...\)
\(\sqrt{\frac{a}{b}}\)
\((a + b)\,\sqrt{c}\)
\((a - b)\,\sqrt{c}\)
\(\sqrt{a + b + 2\,\sqrt{a\,b}}\)
\(\sqrt{a + b - 2\,\sqrt{a\,b}}\)
\(a^2 + 2\,a\,b + b^2\)
\(a\,\sqrt{c} - b\,\sqrt{c} = ...\)
\(\sqrt{\frac{a}{b}}\)
\((a + b)\,\sqrt{c}\)
\((a - b)\,\sqrt{c}\)
\(\sqrt{a + b + 2\,\sqrt{a\,b}}\)
\(\sqrt{a + b - 2\,\sqrt{a\,b}}\)
\(a^2 + 2\,a\,b + b^2\)
\(\sqrt{a} + \sqrt{b} = ...\)
\(\sqrt{a\,b}\)
\(\sqrt{\frac{a}{b}}\)
\((a + b)\,\sqrt{c}\)
\((a - b)\,\sqrt{c}\)
\(\sqrt{a + b + 2\,\sqrt{a\,b}}\)
\(\sqrt{a + b - 2\,\sqrt{a\,b}}\)
\(\sqrt{a} - \sqrt{b} = ...\)
\(\sqrt{a\,b}\)
\(\sqrt{\frac{a}{b}}\)
\((a + b)\,\sqrt{c}\)
\((a - b)\,\sqrt{c}\)
\(\sqrt{a + b + 2\,\sqrt{a\,b}}\)
\(\sqrt{a + b - 2\,\sqrt{a\,b}}\)
\((a + b)^2 =\) \((a + b)\;(a + b) = \)\(...\)
\(\sqrt{a + b + 2\,\sqrt{a\,b}}\)
\(\sqrt{a + b - 2\,\sqrt{a\,b}}\)
\(a^2 + 2\,a\,b + b^2\)
\(a^2 - 2\,a\,b + b^2\)
\(a^2 - b^2\)
\(a^3 + 3\,a^3\,b + 3\,a\,b^3 + b^3\)
\((a - b)^2 =\) \((a - b)\;(a - b) = \)\(...\)
\((a + b)\,\sqrt{c}\)
\((a - b)\,\sqrt{c}\)
\(\sqrt{a + b + 2\,\sqrt{a\,b}}\)
\(\sqrt{a + b - 2\,\sqrt{a\,b}}\)
\(a^2 + 2\,a\,b + b^2\)
\(a^2 - 2\,a\,b + b^2\)
\((a + b)\;(a - b) = ...\)
\(a^2 + 2\,a\,b + b^2\)
\(a^2 - 2\,a\,b + b^2\)
\(a^2 - b^2\)
\(a^3 + 3\,a^3\,b + 3\,a\,b^3 + b^3\)
\(a^3 - 3\,a\,^3\,b + 3\,a\,b^3 - b^3\)
\(\sqrt{a + b + c + 2\,(\sqrt{a\,b} + \sqrt{a\,c} + \sqrt{b\,c})}\)
\((a + b)^3 = ...\)
\(a^2 + 2\,a\,b + b^2\)
\(a^2 - 2\,a\,b + b^2\)
\(a^2 - b^2\)
\(a^3 + 3\,a^3\,b + 3\,a\,b^3 + b^3\)
\(a^3 - 3\,a\,^3\,b + 3\,a\,b^3 - b^3\)
\(\sqrt{a + b + c + 2\,(\sqrt{a\,b} + \sqrt{a\,c} + \sqrt{b\,c})}\)
\((a - b)^3 = ...\)
\(a^2 + 2\,a\,b + b^2\)
\(a^2 - 2\,a\,b + b^2\)
\(a^2 - b^2\)
\(a^3 + 3\,a^3\,b + 3\,a\,b^3 + b^3\)
\(a^3 - 3\,a\,^3\,b + 3\,a\,b^3 - b^3\)
\(\sqrt{a + b + c + 2\,(\sqrt{a\,b} + \sqrt{a\,c} + \sqrt{b\,c})}\)
\(\sqrt{a} + \sqrt{b} + \sqrt{c} = ...\)
\(a^2 + 2\,a\,b + b^2\)
\(a^2 - 2\,a\,b + b^2\)
\(a^2 - b^2\)
\(a^3 + 3\,a^3\,b + 3\,a\,b^3 + b^3\)
\(a^3 - 3\,a\,^3\,b + 3\,a\,b^3 - b^3\)
\(\sqrt{a + b + c + 2\,(\sqrt{a\,b} + \sqrt{a\,c} + \sqrt{b\,c})}\)
\(\frac{a}{\sqrt{b}} = ...\)
\(\frac{a}{b}\sqrt{b}\)
\(\frac{a}{b^2 - c}\,(b - \sqrt{c})\)
\(\frac{a}{b^2 - c}\,(b + \sqrt{c})\)
\(\frac{a}{b - c}\,(\sqrt{b} - \sqrt{c})\)
\(\frac{a}{b - c}\,(\sqrt{b} + \sqrt{c})\)
\(\frac{a}{b}\)
\(\frac{a}{b + \sqrt{c}} = ... \)
\(\frac{a}{b}\sqrt{b}\)
\(\frac{a}{b^2 - c}\,(b - \sqrt{c})\)
\(\frac{a}{b^2 - c}\,(b + \sqrt{c})\)
\(\frac{a}{b - c}\,(\sqrt{b} - \sqrt{c})\)
\(\frac{a}{b - c}\,(\sqrt{b} + \sqrt{c})\)
\(\frac{a}{b + c}\)
\(\frac{a}{b - \sqrt{c}} = ... \)
\(\frac{a}{b}\sqrt{b}\)
\(\frac{a}{b^2 - c}\,(b - \sqrt{c})\)
\(\frac{a}{b^2 - c}\,(b + \sqrt{c})\)
\(\frac{a}{b - c}\,(\sqrt{b} - \sqrt{c})\)
\(\frac{a}{b - c}\,(\sqrt{b} + \sqrt{c})\)
\(\frac{a}{b - c}\)
\(\frac{a}{\sqrt{b} + \sqrt{c}} = ... \)
\(\frac{a}{b}\sqrt{b}\)
\(\frac{a}{b^2 - c}\,(b - \sqrt{c})\)
\(\frac{a}{b^2 - c}\,(b + \sqrt{c})\)
\(\frac{a}{b - c}\,(\sqrt{b} - \sqrt{c})\)
\(\frac{a}{b - c}\,(\sqrt{b} + \sqrt{c})\)
\(\frac{a}{b + c}\)
\(\frac{a}{\sqrt{b} - \sqrt{c}} = ... \)
\(\frac{a}{b}\sqrt{b}\)
\(\frac{a}{b^2 - c}\,(b - \sqrt{c})\)
\(\frac{a}{b^2 - c}\,(b + \sqrt{c})\)
\(\frac{a}{b - c}\,(\sqrt{b} - \sqrt{c})\)
\(\frac{a}{b - c}\,(\sqrt{b} + \sqrt{c})\)
\(\frac{a}{b - c}\)